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Abstract  

Toxoplasmosis is an opportunistic disease caused by the protozoan parasite 

Toxoplasma gondii.  The parasite is usually staved off by a healthy immune system and 

remains dormant in the body.  In immunocompromised patients, the parasite can become 

active and spread throughout the body causing symptoms such as encephalitis, cognitive 

disorders, seizures, and death. Combination drug therapy is the usual treatment for 

toxoplasmosis; however, patients suffer from problems of intolerance, allergic reactions, 

and cytotoxicity.  In an effort to identify new drug targets for toxoplasmosis, a series of 

compounds have been synthesized that can be used as tools to probe the unique pathways 

used by T. gondii to survive in the human host.  One class of these compounds is 

pyridinyl imidazoles, which have been shown to be active against T. gondii MAP kinases.  

To set up a protein pull down assay, a biotinylated linker was synthesized.  We have also 

synthesized a compound that’s being used to study the pathways involved in the most 

active and proliferative form of T. gondii.    
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Chapter 1: Synthesis of Dihydropyridines as Anti-Malarials 

1.1 Introduction 

Malaria is a mammalian disease caused by parasites of the Plasmodium spp: P. 

falciparum, P. vivax, P. ovale, and P. malariae.1 Although cases in the United States 

have been nearly eradicated, malaria is still prevalent in over 109 countries, mostly in the 

tropics and the subtropics.  According to the World Health Organization, 198 million 

cases of malaria were reported in 2013 worldwide,2 and approximately 580,000 deaths 

were reported (mostly among young African children).  The most severe cases of malaria 

are caused by P. falciparum and P. malariae, which can sometimes be fatal.1   

The life cycle of the parasite (Figure 1)3 can be divided into three phases: the 

exoerythrocytic phase, the erythrocytic cycle, and the sporogonic phase.1  The 

exoerythrocytic stage allows for the parasite to enter the bloodstream of the human and 

reaches the liver, where it proceeds to develop until it ruptures the liver cells and enters 

the bloodstream once more.  After entering the erythrocytic cycle, the parasite burrows 

into red blood cells, thereby evading the immune system.  At this point of the cycle, the 

parasite continues to multiply until the red blood cell ruptures, and then moves on to 

infect more red blood cells, thereby continuing to replicate and spread throughout the 

body.  
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In the sporogonic phase, which takes place in the digestive track of the mosquito, 

the parasite reproduces sexually and then proceeds to the gut of the infected mosquito. It 

is here where the zygotes differentiate into ookinetes and develop into cysts which 

eventually rupture, spreading the sporozoites into the salivary glands of the mosquito and 

passed along duriing its next blood meal.  

The symptoms presented by the patient are usually associated with a specific 

point in the parasite’s erythrocytic life cycle.1   For instance, when the parasite ruptures 

the red blood cells, the increased number of parasites in the blood elicits an inflammatory 

response, and the patient develops feverish symptoms such as headaches, chills, and 

diarrhea.1  The dying red blood cells release an excess amount of hemoglobin, and when 

the liver cannot process the large amount of hemoglobin, causing jaundice in the patient.1  

Red blood cells become more rigid from the parasite’s proteins that get embedded on the 

surface.  This causes blockage of the capillaries and eventually tissue death.  Cardiac and 

pulmonary complications can arise that can lead to death. 

Figure 1. Life Cycle of the Plasmodium parasite3 
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Malaria is 

typically treated with a 

combination of drugs 

that have been 

historically used 

including: quinine, 

chloroquine, 

mefloquine, atovaquone, sulfadoxine, and pyrimethamine (Figure 2).4   

Artemisinin, an anti-malarial, is a natural product found in the Chinese 

wormwood plant, Artemisia annua;5 the 2015 Nobel Prize in Physiology/Medicine was 

awarded to Youyou Tu, a pharmacologist, for the discovery of artemisinin.  Derivatives 

of artemisinin are also used to treat the disease (Figure 3).  It is recommended by the 

World Health Organization to combine artemisinin, or one of its derivatives, with a 

historical anti-malarial drug, such as those in Figure 2.  

Preventative measures are also used in areas with high malaria endemics to reduce 

the spread of the infection due to limited access to pharmaceuticals.  These initiatives are 

not always successful.6  One 

example of this is the misuse of 

nets provided to keep 

mosquitoes out.  Nets lined with 

pesticides are provided to local 

populations in endemic areas.  

However, the locals use them as 

Figure 3. Artemisinin and derivatives 
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Figure 4. Retrosynthetic scheme of asymmetric 1,4-DHPs 
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a means of getting food by fishing with these nets because they are cheaper than buying 

fishing nets.  The nets are not used for their intended purposes, and the pesticides get into 

the local bodies of water, reducing the population of fish at an alarming rate.6   

Toxicity of some of these drugs and development of drug resistance have 

prompted a worldwide research and development initiative toward novel treatments for 

malaria.7 

In a high throughput screening campaign conducted by St. Jude Children’s 

Research Hospital, GlaxoSmithKline, Novartis, and many other academic institutions, 

309,474 compounds were tested against the 3D7 strain of P. falciparum.8  Of those 

compounds, 1,300 showed >80% activity, 561 of which had EC50 values less than 2 µM 

and a selectivity index of >10 when compared to two mammalian cell lines.  Out of the 

561 compounds, 172 were reconfirmed by three separate labs to have anti-malarial 

activity.  A review of the results reported the different classes of compounds that could be 

potential anti-malarial drugs.8  Dihydropyridines represent one of the classes reported. 

1.2 DHPs: Synthesis, Separation of Stereoisomers, and in vitro Testing 

Dihydropyridines (DHPs) can be synthesized via the Hantszch reaction (Figure 4).9  

The mechanism begins with a Knoevenegal condensation between the diketone and the 

aldehyde.  The enamine, formed from the β-ketoester and ammonia, goes through a 

condensation reaction with the Knoevenegal intermediate to the cyclized product.  The 

DHPs in this study were synthesized according to the reaction scheme in Figure 5. 
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 The asymmetric reaction produces two potential racemic diastereomers.  For the 

in vitro studies, the mixture of isomers for each compound were separated by reverse 

phase preparative HPLC.  All four isomers were tested against the following strains of P. 

falciparum: 3D7 (chloroquine sensitive), K1 (chloroquine resistant), W2 (chloroquine 

and pyrimethamine resistant) and TM90-C2B (chloroquine, mefloquine, pyrimethamine, 

and atovaquone resistant).   

 Three analogs were synthesized to add to the library of DHP’s from previous 

work (Figure 5).10  Compounds 1-3 were tested in vitro, and the IC50 values are reported 

in Table 1. The (4,7)–cis and (4,7)–trans isomers for compounds 2 and 3 were separated 

by reverse phase preparative HPLC and tested individually in vitro.   

Figure 5. Synthesis of 1,4-DHP analogs for in vitro studies 
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 Another aspect of this synthetic study was to determine the absolute 

stereochemistry of the 4 and 7 position for compound 1, and then test each of the four 

isomers for in vitro activity against the P. falciparum parasite.  From previous work, 

using the Evans oxazolidinone as a chiral auxiliary, x-ray crystal structures confirmed the 

absolute stereochemistry for the 4,7-cis conformations for compound 1.  With that as a 

standard, the synthesis of compound 1 (Figure 6) using a different chiral auxiliary at the 3 

position was done to grow crystals for x-ray crystallography, since this was unsuccessful 

with the Evans oxazolidinone.  

The order in which the compounds are shown in Figure 6 represents how the 

order in which the isomers eluted off of the reverse phase HPLC column.  Cis-DHP 1.1 

eluted first off of the column, a mixture of cis 1.2 and trans 1.3 followed, and trans 1.4 

eluted at the end.  The chiral auxiliary was removed from all three fractions with 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU), followed by an alkylation with ethyl iodide to 

Figure 6. Synthesis of compound 1 with threonine chiral auxiliary 

Cl
CHO

O

O

O

O

ACN, 120 °C
NH4OAc

O2N

NHO
O

O

O

O O

N
H

O
Cl

O

O

O

O

O

O
NHO

O2N

N
H

O
Cl

O

O

O

O

O

O
NHO

O2N

N
H

O
Cl

O

O

O

O

O

O
NHO

O2N

cis-1.1

cis-1.2
+

(trans)-1.4

trans-1.3

1) DBU, MeOH
2) K2CO3, EtI

N
H

O
Cl

O

O

O

O

(trans)-1.3

N
H

O
Cl

O

O

O

O

(4S,7S)-1.2



www.manaraa.com

  

 7 

obtain the corresponding ethyl esters (shown in Figure 6 with the cis-1.2 and trans-1.2).  

Diastereomers 1.2 and 1.3 were then separated once more using preparative HPLC.   

An attempt was made at growing crystals of trans-1.4 (with the chiral auxiliary) in 

ethanol, methanol, dimethylsulfoxide, dimethylformamide, toluene, chloroform, and a 

combination of solvent systems, but high quality crystals were not attained.  The absolute 

stereochemistry of trans-1.4 was subsequently determined from an undesired side 

product.  In an attempt to derivatize the C2 position, a reaction was performed to 

brominate the methyl group, but an undesired tribrominated product formed (Figure 7).  

X-ray crystallography of this side product revealed the absolute stereochemistry of the 

trans isomers (Figure 7).  All of the pure isomers for compound 1 were tested in vitro 

along with the racemic diastereomers of compounds 2 and 3 (Table 1).   

N
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Figure 7. Tribrominated side product, and absolute stereochemistry for trans isomers 
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The 4,7-trans compounds were more active than the 4,7-cis analogs.  Compound 1 

revealed the importance of the stereochemistry at position 4.  The IC50 values for the 

DHP’s with a 4S stereocenter (compounds 1.2 and 1.3) were in the micromolar range, 

whereas the 4R DHP’s (compounds 1.1 and 1.4) had single or double-digit nanomolar 

activity.   

1.3 Conclusion 

As part of a structure activity relationship study for 1,4-dihydropyridines as anti-

malarials, three DHP analogs were synthesized and tested in vitro.  The absolute 

stereochemistry for the four isomers of one particular analog were separated with the use 

of a chiral auxiliary.  Crystallization of this compound was attempted for x-ray 

crystallography, however, this was unsuccessful.  An undesired product for the 

bromination of the pure trans enantiomer produced quality crystals that gave x-ray 

crystallographic data and determined the absolute stereochemistry of the 4,7-trans 

products of compound 1.  In vitro tests of the compounds 1.1-1.4 revealed the 

significance of the stereochemistry of position 4 for activity.  The 7 position also seems 

to improve the activity 10-fold (Table 1, compound 1.1 vs. 1.4).  The compounds 

Table 1. IC50 values for DHPs 1-3 
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presented here are part of a large library of compounds in a structure activity relationship 

study of 1,4-dihydropyridines as anti-malarials and a manuscript of this work is being 

compiled for publication.10 
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Chapter 2: Synthetic Agents for the Treatment and Analysis of Toxoplasmosis 

2.1 Toxoplasma gondii 

Toxoplasma gondii is an apicomplexan protozoan parasite that causes the disease 

toxoplasmosis.  The definitive host for the parasite is the feline.4  After the cat ingests 

tissue cysts from infected small rodents, the parasite sexually reproduces and develops 

into oocysts.  The infective oocysts are shed in the cat’s feces and transmitted back to 

small rodents or to humans from the consumption of contaminated soil, plant material, or 

undercooked meat.4  The parasite can also be transmitted to the fetus if the mother is 

infected with the parasite.11   

The oocysts develop into rapidly dividing tachyzoites in the intermediate host 

(Figure 8).12,13   

 



www.manaraa.com

  

 11 

As a tachyzoite in the gut, the parasite continues to proliferate and elicits a 

number of inflammatory response cells, which can also get infected and spread 

throughout the body like a Trojan horse.14  The tachyzoite also responds to IFNɣ which 

causes it to develop into the slow growing bradyzoite form as tissue cysts – a mechanism 

by which the parasite can evade the immune system. 

2.2 Toxoplasmosis: Epidemiology, Symptoms, and Treatments 

According to the Centers for Disease Control and Prevention, toxoplasmosis is 

one 

of five neglected parasitic infections in the United States.15  Approximately 22.5% of the 

U.S. population has been infected with T. gondii.11  In some areas of the world, usually in 

hotter, more humid climates, up to 95% of the population has been infected.   

Toxoplasmosis is an opportunistic infection that can usually be staved off by a 

healthy immune system, although the parasite remains dormant.  Toxoplasmosis causes 

flu-like symptoms (body aches, swollen lymph nodes, headache, fatigue, etc.).11 In 

patients with compromised immune systems, symptoms include dizziness, confusion, 

retinitis, and seizures.  AIDS patients often contract an opportunistic infection in the 

lungs, such as tuberculosis, or pneumonia.11, 16 If a woman acquires the infection during 

pregnancy, the parasite can be transmitted to the fetus, which can lead to miscarriage or 

stillbirth in the early stages of pregnancy.  Fetal toxoplasmosis can cause jaundice and 

retinitis in the baby.  In later years, the child often develops hearing loss or mental 

disability.  Recently, studies have shown that toxoplasmosis can cause behavioral 

changes in rats, chimpanzees, and humans.17  There is a link between toxoplasmosis and 

severe mental disorders, such as schizophrenia and bipolar disorder.18   

Figure 8. Life cycle of Toxoplasma gondii12 
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 Toxoplasmosis is 

commonly treated with a 

combination drug therapy of 

pyrimethamine and sulfadiazine 

(Figure 9).12  In 2015, 

pyrimethamine (trade name 

Daraprim®) received national media coverage due to a significant increase in its price by 

the CEO of Turing Pharmaceuticals, Martin Shkreli.19  It can be cytotoxic because it acts 

as an anti-folate and affects rapidly dividing cells.  Leucovorin (folinic acid) is also 

administered to alleviate the toxicity.12  Clindamycin or atovaquone is substituted in for 

sulfadiazine for patients that are allergic to sulfa drugs.20 Mechanisms of drug resistance 

have also been shown to be an issue in Toxoplasmosis.21 T. gondii is known for being a 

good model organism to study for other parasitic infections.22  The search for novel drug 

therapies and studying the mechanisms of action for T. gondii are significant. 

2.3 HIF-1, TgMAPK, and SB-505124 

Protein kinases (PKs) are involved in many cellular processes and they function 

by transferring a phosphate group to other substrates.  These phosphate transfers are 

involved in signal transduction pathways that regulate cellular growth, division, and 

apoptosis, among other homeostatic processes.23  Protein kinases are a way for the 

parasite to coordinate its infectious cycle in the body.  If this signaling is disrupted, the 

parasite can be more easily eradicated. 

Figure 9. Pharmaceutical treatments for toxoplasmosis 
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Toxoplasma gondii encodes for 190 kinases;14 some drug discovery efforts for 

toxoplasmosis include targeting of parasitic CAMK (Calcium Dependent Protein 

Kinases),24 MAPKs (Mitogen Activated Protein Kinases),25 and ROPK (Rhoptry 

Kinases).26  Each set of kinases is involved in invasion, host immune manipulation, 

proliferation, and egress.27   

T.gondii manipulates the molecular processes of the host in order to survive in the 

intermediate host.  One such way is by recruiting HIF-1 (Hypoxia Inducible Factor), a set 

of transcription factors that regulate the cell under hypoxic (low oxygen) conditions.28  T. 

gondii, under physiological oxygen levels, stabilizes the HIF-1α subunit, which is 

achieved by downregulating PHD2 (Prolyl Hydroxylase Domain 2).25  Toxoplasma 

requires the use of activin receptor-like kinases (ALK4, ALK5, and ALK7) to 

downregulate PHD2.   

Pyridinyl imidazole SB505124 (Figure 10), an inhibitor of ALK4, ALK5, and 

ALK7,29 was used to study the role of ALK’s in HIF-1α activation.25  In this study, an 

unexpected result showed an inhibition of parasite growth in a 

HIF-1α knockout cell line.  This led to the discovery that SB-

505124 (Figure 10) reduced parasite growth by simultaneously 

inhibiting both host HIF-1 and TgMAPK (Toxoplasma gondii 

MAPK).  

In an effort to identify new pharmaceuticals to treat this disease, the synthesis of a 

series of compounds was undertaken to set up a protein pull down assay to test against 

Toxoplasma gondii kinases (Figure 11).30  One class of these compounds are pyridinyl 

imidazoles, such as SB-505124.  In addition, the synthesis of a biotinylated linker is in 

O

O

NH

N

N

Figure 10. SB-505124 - a 
known ALK inhibitor 
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progress that can have a series of kinase inhibitors coupled at the end of it.  

Staurosporine, a known inhibitor of most kinases,31 has been coupled to the linker and 

will be used as a starting point for the assay.  To make this more specific for TgMAPK, 

an analog of SB505124 has been synthesized to attach to the linker.   

As shown in the Figure 11, the setup for the protein pull down assay is going to be 

developed so that the kinases of  T.gondii can be isolated.  The immobilized ligand is 

composed of a biocompatible, biotinylated linker with an immobilized ligand attached to 

it.  The ligand has a high affinity for the target kinase.  In this case, the initial 

development of the assay will use staurosporine, a promiscuous kinase inhibitor, as the 

active site directed ligand.31  It is known that T.gondii kinases cannot be transfected into 

other organisms for the purposes of purifying the protein, so these compounds will 

provide a tool to isolate the kinases and screen any potential inhibitors against T. gondii 

kinases.29 

2.4 Synthesis of Pyridinyl Imidazole SB-505124 
 

The synthesis of pyridinyl imidazoles can be achieved from a condensation 

reaction of a 1,2-diketone with an aldehyde,32 as shown in Figure 12.  

Figure 11. Protein pull down assay30 
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 SB-505124 can be 

synthesized from the diketone, 

which is prepared via alpha 

oxidation of the monoketone.  The ketone can be made from a nucleophilic acyl 

substitution of a piperonylic acid derivative with 2,6-lutidine. 

  In the first step of the synthesis, piperonylic acid is converted to methyl ester 2.1, 

which is then used for a nucleophilic acyl substitution with 2,6-lutidine (Figure 13) to 

obtain ketone 2.2. However, this synthetic step provided low yields, possibly due further 

reaction with the product ketone.  

A Weinreb amide was used instead of the ester to take advantage of the chelation 

effects of the N-methoxy group in the transition state, until the reaction is quenched with 

water (Figure 14).33 Amide 2.1a was synthesized from piperonylic acid through the acid 

chloride.34  Nucleophilic substitution with 2,6-lutidine provided ketone 2.2.  The 

OR1

R2 O
+

H R3

O
NH4OAc

N

H
NR1

R2

R3

Figure 12. General synthesis for pyridinyl imidazoles 

Figure 11. Synthesis of ketone 2.2 from methyl ester 2.1 
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Figure 12. Synthesis of ketone 2.2 fromWeinreb amide 2.1a 
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chelation effects of the methoxy group on the amide holds the tetrahedral intermediate in 

place after one addition of the nucleophile until the reaction is quenched.  This method 

provided much better yields for this synthetic transformation.   

 Diketone 2.3 was prepared by α-oxidation of monoketone 2.2 with aqueous 

hydrobromic acid in the presence of dimethyl sulfoxide (Figure 15).35  

 A condensation of diketone 2.3 with pivaldehyde provided SB-505124 (Figure 

16; Compound 2.4).36  Compound 2.5 was synthesized initially with an eye to coupling 

the test compound and the biotinylated linker via a Mitsunobu reaction (Figure 16).  

Compound 2.6 was synthesized and tested in vitro along with compounds 2.4 and 2.5 to 

confirm there was not a significant change in activity against T.gondii. 

Figure 13. Alpha oxidation to diketone 2.3 

HBr (aq)
DMSO, 60 °C, 3h

O

O

O

N
O

O

O

O

N
(87%)

(2.3)(2.2)
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Due to a change in the synthetic route for the biotinylated linker, compound 2.5 

could not be used for coupling with the biotinylated linker, so compound 2.8 (shown 

above) was synthesized to attach the linker using a peptide coupling reagent. 

2.5 Synthesis of Biotinylated Linker 

The biotin conjugated flexible linker (Figure 17) is composed of four parts.  The 

first and second part come from the coupling of the dipeptide portion with the 

octaethylene glycol chain (both shown in red).  Biotin (blue) is then coupled to the linker 

as a way to immobilize the linker with streptavidin beads.  The final part of the synthesis 

Figure 14 Pyridinyl imidazole analogs 
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is the attachment of different small molecules, in this case, staurosporine (black), which 

will serve as active site directed ligands for the kinases in the assay (Figure 17). 

 The synthesis of the dipeptide (Figure 18) began with Boc protection of 6-

aminocaproic acid, followed by an esterification with N-hydroxysuccinimide in the 

presence of EDC to afford activated ester 2.10.   The activated ester was coupled with 

another 6-aminocaproic acid followed by another esterification to obtain dipeptide 2.12.  

The octaethylene glycol chain was originally going to be made from two 

tetraethylene glycol units with protected amines (Figure 19).  Several attempts at this 

reaction were made using different bases such as potassium carbonate, sodium tert-

O O O O O O O N
H

O H
N

O
N
H

O

S

HN
NH

O

N
H

N N

H
N O

O
O

N
O

O

(2.22)

Figure 15 Biotinylated linker 

Figure 16 Synthesis of dipeptide 2.12 
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butoxide, and sodium hydride.  This reaction did not work, so the ethylene glycol chain 

was made from octaethylene glycol (OEG).  

 Starting from octaethylene glycol, the free alcohols on each end were mesylated 

and displaced with sodium azide (Figure 20).37  A mono-Staudinger reduction was 

performed with triphenylphosphine to reduce one of the azides to monoamine 2.14.38  

Monoamine 2.14 was coupled with dipeptide 2.12 to obtain compound 2.15, the flexible 

portion of the linker.  

The activated ester of biotin was synthesized with N-hydroxysuccinimide and 

EDC (Figure 21).  After Boc deprotection of 2.15 using trifluoroacetic acid, the flexible 

linker was coupled to the activated ester of biotin (Figure 21).  Subsequent reduction of 

the azide using hydrogen over palladium catalyst afforded biotinylated linker 2.19, which 

can be coupled potentially with any carboxylic acid.   

N

O

O

OOOOOOON3

HO
O O

O N

O

O

N3
O O

O OTs
Base

Figure 17 First proposed route to synthesize protected OEG 

Figure 20. Synthetic sheme for linker 2.15 

1) MsCl, NEt3
    DCM, 0o C - rt, 2h

2) NaN3, DMF
    110 °C, 12h

Ph3P, 5% HCl (aq)
Diethyl ether, rt, 12 h

(90%)

N
H

H
N

O
O

O

O

O
N

O

O

NEt3, EDC
CHCl3

55 °C, 3.5h
(93%)

(70%)

(2.12)

(2.13) (2.14)

(2.15)

HO O OH
7

N3
O N37 H2N

O N37

N
H

O N37

(2.14)

N
H

H
N

O
O

O O



www.manaraa.com

  

 20 

  Our next goal was to couple staurosporine with linker 2.19.  Fluorescein was 

first coupled to the linker to give compound 2.20.  This will be used to ensure that the 

linker loads onto the streptavidin beads and to test the solubility of the linker in the media 

used for the T.gondii assay (Figure 22).  

Amidation of Staurosporine was achieved with succinic anhydride in dimethyl 

sulfoxide and then coupled to linker 2.19 (Figure 23).39  

Figure 21. Synthetic scheme to biotinylated linker  

O

S

NH
HN

O

OH DMF, rt, 12 h.

O

S

NH
HN

O

O N

O

O(89%)

N-hydroxysuccinimide, EDC, NEt3

(2.16)

TFA
DCM, rt,  4h

NEt3
CHCl3
55 °C, 50 min.
(68%, 2 steps)

O

S

HN
NH

O

(2.15) (2.17)

(2.18)(2.19)

N
H

ON3 7
NH2

H
N

O

O
N
H

ON3 7
N
H

H
N

O

O

O

O

N
H

ON3 N
H

H
N

O

O

7

O

S

HN
NH

O

N
H

OH2N N
H

H
N

O

O

7

(2.16)

H2, Pd(OH)2

MeOH, rt, 2h
(89%)

Figure 22. Fluorescein - biotinylated inker 

O OHO

CO2H

O
O

N

O

O

(Fluorescein)

EDC, NEt3
CHCl3
55 °C, 12h

(2.19)

(2.20)

O

S

HN
NH

O

N
H

ON
H

N
H

H
N

O

O

7

O OHO

CO2H

O



www.manaraa.com

  

 21 

  F inally, pyridinyl imidazole 2.8 was coupled to linker 2.19 to make compound 

2.23 (Figure 24).  Reverse phase preparative-HPLC was used for purification of 

compounds 2.20, 2.22, and 2.23.   

  

Figure 23. Staurosporine-biotinylated linker 
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Figure 24. Test compound 2.8-biotinylated linker 
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2.6 Summary and Future Plans 

Pyridinyl imidazole SB505124 is a known ALK4, 5, and 7 inhibitor, and has been 

shown to significantly reduce the growth of Toxoplasma gondii in vitro by targeting host 

HIF-1 and TgMAPK.  The purificaiton of T. gondii kinases is not ideal, so a protein pull 

down assay will be set up to search for novel drug therapies for toxoplasmosis.   

Several compounds were synthesized for this assay including: SB-505124 to be 

used as a standard, a set of analogs, and a biotinylated linker as a way to potentially 

isolate T. gondii MAP kinases.  

 Initially, fluorescein linker 2.20 will be used to show that the linker can be loaded 

onto the streptavidin beads, and that it is compatible with the assay media.  Staurosporine 

linker 2.22 will be used in the assay to test overall kinase activity, and attempt to isolate 

T. gondii kinases.  Linker 2.23 can then be used for the same purposes but more 

specifically targeted to TgMAPKs. 

2.7 Synthesis of Shield-1 for the Molecular Studies of T. gondii 

The ability to probe molecular pathways in biological systems is extremely useful 

in biological research.  Dr. Thomas J. Wandless and his group at Stanford University 

developed a method to control the perturbation of protein function for studying biological 

systems.  Shield-1 is a cell permeable small molecule that binds tightly to a mutant of FK 

binding protein 12 (FKBP12).40  FKBP12 is a 12 kD protein that forms a tightly bound 

complex with immunosuppressant drugs such as FK506 and Rapamycin.41  Figure 25 

shows the structural similary between FK506, rapamycin, and Shield-1.  FKBP12 is 

genetically fused to a protein of interest so that the activity of the protein is directly 

controlled by dosing with Shield-1.41  



www.manaraa.com

  

 23 

  

 

 

Toxoplasma gondii, in the human host, rapidly divides and spreads in the body as 

a tachyzoite.  When the parasite is overwhelmed by the immune system, it forms tissue   

cysts called bradyzoites (Figure 26).42  In a previous study conducted by Dr. Michael 

White’s group, Shield-1 was used to study the ApiAP2 transcription factors involved in 

the change from the highly motile, rapidly proliferating tachyzoite to the slow growing 

bradyzoite (dormant form of the parasite) (Figure 26).43 

 From previous studies, it was shown that transcription factor AP2IX-9, when over 

expressed in T. gondii with the destabilizing domain, decreases the amount of bradyzoite 

formation in the presence of Shield1.43-44  Our goal is to use this compound to study the 

opposite effects of AP2IV-3 on tissue cyst formation in vitro and in vivo, so a reliable 

source of Shield-1 is required.  The synthesis of Shield-1 (compound 2.32) is needed for 

tachyzoite pre-bradyzoite mature bradyzoite 

AP2IV-3 

AP2IX-9 AP2IV-4 

Figure 26. Transcription factors Involved in T. gondii bradyzoite formation43 

Figure 25. Structures for rapamycin, Shield-1, and FK506 
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these studies because, although Shield-1 is commercially available, it is expensive (5 mg 

for $1200), and for in vivo experiments, more of the compound is needed. 

The synthesis of 2.32 was envisioned from a Steglich esterification of alcohol 

2.27 and carboxylic acid 2.31 (Figure 27).  Alcohol 2.27 can be obtained from the 

corresponding α,β-unsaturated ketone which can be made from an aldol condensation.  

Carboxylic acid 2.31 can be synthesized from an alkylation of trimethoxyphenyl acetic 

acid and amidation with homoproline.   

 The synthesis of Shield-1 began with an aldol condensation of 3,4-

dimethoxybenzaldehyde and 3-hydroxyacetophenone followed by a reduction of the 

alkene 2.24 with ammonium formate in the presence of palladium catalyst to get ketone 

2.25 (Figure 28).  Alkylation of the phenol with 4-(2-chloroethyl)morpholine followed by 

an asymmetric reduction of the ketone with (+)-chlorodiisopinocampheylborane (DIP-Cl) 

Figure 27. Retrosynthetic scheme for Shield-1 
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gave alcohol 2.27 (Figure 28).  The enantiomeric excess for alcohol 2.27 was determined 

using analytical chiral HPLC.  

Alkylation of 3,4,5-trimethoxyphenyl acetic acid was carried out with sodium 

bis(trimethylsilyl)amide and ethyl iodide (Figure 30).  Recrystallization with (-)-

cinchonidine (Figure 29), a chiral base, was done in acetonitrile to obtain carboxylic acid 

2.29.  Amidation with pipecolic acid methyl ester using 

Mukaiyama’s reagent, and saponification of the methyl ester gave 

carboxylic acid  2.31.  Finally, esterification of the two 

intermediates using dicyclohexylcarbodiimide and 

dimethylaminopyridine gave the final product (Figure 30; 

Compound 2.32).   

N
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of chiral base used 
for recrystallization  

Figure 28. Synthetic scheme for alcohol 2.27 
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 The AP2IV-3 transcription factor is currently being studied in vitro to determine 

the effects on AP2IV-3 on bradyzoite formation (Figure 31).  At pH 7.8, the parasite with 

overexpressed AP2IV-3 shows a high level of bradyzoite formation (purple) in the 

presence of Shield-1 (S+), and less bradyzoite formation in the absence of Shield-1 (S-) 

due to the degradation of the transcription factor.   

Figure 31. Graph showing the effects of AP2IV-3 on bradyzoite formation 
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2.8 Conclusion for Shield-1 Synthesis and Data 

 Shield-1 was successfully synthesized and tested, and showed comparable activity 

to the commercially available compound.  In addition, synthetic Shield-1 was used to test 

the effects of AP2IV-3 transcription factor and bradyzoite formation in T.gondii.  Shield-

1 was also sent to Dr. Emma Wilson at University of California, Riverside to conduct in 

vivo studies for the first time.  The synthesis of analogs of Shield-1 using the described 

methodology could allow for more optimal binding to FKBP.   
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Appendix A – Experimental Procedures 

All NMR experiments were done on Varian UnityInova 400MHz spectrometer or Direct 
Drive 500 MHz Spectrometer.  High Resolution Mass Spectrometry data was obtained 
from an Agilent 6540 LC/QTOF Spectrometer.  Reverse phase preparative HPLC was 
done on an Agilent preparative 1200 LC/6120B single quadrupole mass spectrometer.  
 
Synthesis of N-methoxy-N-methylbenzo[d][1,3]dioxole-5-carboxamide (2.1a)34 
Piperonylic acid (6 g, 36.1 mmol) was dissolved in dichloromethane (360 mL) followed 
by a catalytic amount of dimethylformamide (2 mL).  Thionyl chloride (2.88 mL, 39.7 
mmol) was added dropwise and the reaction was stirred under reflux for 4 hours.  The 
reaction was cooled to room temperature, and N,O-dimethylhydroxylamine (3.88 g, 39.7 
mmol) was added.  At 0 °C, N,N-diisopropylethylamine (12.56 mL, 72.2 mmol) was 
added dropwise, and the reaction was left to stir overnight.  The reaction was quenched 
with 250 mL of 2 N sodium hydroxide.  The organic layer was collected and the product 
was extracted with dichloromethane (2 x 100 mL).  The combined organic layers were 
dried over magnesium sulfate and concentrated down under reduced pressure to give 
compound 2.1a (4.53 g, 63 %) as a pale oil.  1H NMR (400 MHz, CDCl3): δ (ppm) = 
7.10 (br d, J=8.10 Hz, 1 H), 7.01 (s, 1 H), 6.62 (br d, J=7.81 Hz, 1 H), 5.81 (s, 2 H), 3.38 
(s, 3 H), 3.13 (s, 3 H), 
 
Synthesis of 1-(benzo[d][1,3]dioxol-5-yl)-2-(6-methylpyridin-2-yl)ethan-1-one (2.2)45 
Compound 2.1a (2.4 g, 10.9 mmol) was dissolved in anhydrous tetrahydrofuran (60 mL) 
and cooled to -60 °C.  In a separate pear shaped flask, 2,6-lutidine (2.6 mL, 2.6 mmol) 
was added to anhydrous tetrahydrofuran (60 mL).  At -60 °C, lithium 
bis(trimethylsilyl)amide (46 mL, 1 M sol’n in THF, 44 mmol) was added via cannula to 
this solution stirred for 30 minutes.  The solution of 2,6-lutidine in THF was added 
dropwise via cannula to the first flask, and the reaction was left to stir overnight.  The 
reaction was quenched with 150 mL of water and extracted with ethyl acetate (3 x 100 
mL).  The organic layer was dried over magnesium sulfate and concentrated down under 
reduced pressure.  The crude orange oil was purified by flash chromatography on silica 
gel (3:1 – 2:1 hexanes:ethyl acetate) to give compound 2.2 (1.59 g, 57 %) as a yellow 
solid.  1H NMR (500 MHz, CDCl3): δ (ppm) [Ketone] = 7.71 (dd, J=8.19, 1.71 Hz, 1 
H), 7.38 - 7.55 (m, 2 H), 7.11 (d, J=7.71 Hz, 1 H), 7.06 (d, J=7.72 Hz, 1 H), 6.73 - 6.91 
(m, 1 H), 6.03 (s, 2 H), 4.44 (s, 2 H), 2.57 (s, 3 H); [Enol] = 7.56 (t, J=7.67 Hz, 1 H), 7.52 
(d, J=1.65 Hz, 1 H), 7.41 (dd, J=8.16, 1.74 Hz, 1 H), 7.33 (d, J=1.65 Hz, 1 H), 6.85 - 
6.86 (m, 1 H), 6.82 - 6.84 (m, 1 H), 6.00 (s, 2 H), 5.92 (s, 1 H), 2.51 (s, 3 H) 
 
Synthesis of 1-(benzo[d][1,3]dioxol-5-yl)-2-(6-methylpyridin-2-yl)ethane-1,2-dione 
(2.3)36 
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Compound 2.2 (1 g, 3.92 mmol) was dissolved in dimethyl sulfoxide (17 mL) and heated 
to 60o C.  Hydrobromic acid (4 mL, 48% solution in water) was added dropwise and the 
reaction stirred for three hours at 60o C.  The cooled reaction mixture was quenched with 
50 mL of water.  The pH was adjusted to 8 with a saturated sodium bicarbonate solution.  
The product was extracted with ethyl acetate (3 x 50 mL).  The combined organic layers 
were dried over magnesium sulfate and concentrated down under reduced pressure.  The 
yellow residue was purified by flash chromatography on silica gel (2:1 hexanes:EtOAc) 
to give compound 2.3 (0.91 g, 87 %) as an orange solid. 1H NMR (500 MHz, CDCl3): δ 
(ppm) = 7.97 (d, J=7.70 Hz, 1H), 7.78 (t, J=7.73 Hz, 1H), 7.42 (dd, J=8.13, 1.53 Hz, 1H), 
7.36 (d, J=7.83 Hz, 1H), 6.86 (d, J=8.13 Hz, 1H), 6.08 (s, 2H), 2.51, (s, 3H).   
 
Synthesis of 2-(4-(benzo[d][1,3]dioxol-5-yl)-2-(tert-butyl)-1H-imidazol-5-yl)-6-
methylpyridine (2.4)36 
Diketone 2.3 (0.7 g, 2.60 mmol) was dissolved in tert-butyl methyl ether (28 mL).  
Pivaldehyde (430 µl) was added. A solution of ammonium acetate (1.978 g in 28 mL 
methanol) was added in portions.  The reaction was heated to reflux overnight.  After the 
reaction was cooled to room temperature, 2M sodium hydroxide (25 mL) was added.  
The yellow precipitate was extracted with dichloromethane (3 x 50 mL), dried over 
magnesium sulfate, and concentrated down under reduced pressure.  The yellow residue 
was purified by flash chromatography on silica gel (1:90:190 ammonia:methanol:DCM) 
to give compound 2.4 (154.9 mg, 17 %) as a yellow solid.  1H NMR (500 MHz, CDCl3): 
δ (ppm) = 7.42 (t, 1H), 7.26 (d, 1H), 7.10 (d, 1H), 7.09 (s, 1H), 6.92 (d, 1H), 6.83 (d, 1H), 
5.97 (s, 2H), 2.41 (s, 3H), 1.39 (s, 9H).  HRMS (ESI) calc’d for [C20H21N3O2]+: m/z 
[M+H]+ 336.1704, found 336.1634.   
 
Synthesis of 4-(4-(benzo[d][1,3]dioxol-5-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-
yl)phenol (2.5)36 
Diketone 2.3 (1 g, 3.72 mmol) was dissolved in tert-butyl methyl ether (37 mL).  p-
anisaldehyde (678 µl, 5.57 mmol) was added.  A solution of ammonium acetate (2.87 g in 
41 mL of methanol) was added in portions.  The reaction was heated to reflux overnight.  
After the reaction cooled to room temperature, water (35 mL) was added.  The reaction 
mixture was acidified to pH 4 with 2M hydrochloric acid.  The brown precipitate was 
extracted with dichloromethane (3 x 100 mL), dried over magnesium sulfate, and 
concentrated down.  The brown residue was purified by flash chromatography on silica 
gel (4:96-6:94 methanol:dichloromethane) to give compound 2.5 (420 mg, 30 %) as a 
light brown solid. 1H NMR (500 MHz, CD3OD): δ (ppm) = 7.84 (m, 2 H), 7.59 (t, J=7.76 
Hz, 1H), 7.25 (d, J=7.82 Hz, 1H), 7.14 (d, J=7.64, 1H), 6.98-7.01 (m, 2H), 6.89 (d, 
J=8.86 Hz, 2H), 6.84 (d, J=7.89 Hz, 1H), 5.96 (s, 2H), 2.25 (s, 1H). HRMS (ESI) calc’d 
for [C22H17N3O3]+: m/z [M+H]+ 372.1340, found 372.1349. 
 
Synthesis of  2-(4-(benzo[d][1,3]dioxol-5-yl)-2-(4-methoxyphenyl)-1H-imidazol-5-yl)-
6-methylpyridine (2.6)36 
Diketone 2.3 (1 g, 2.60 mmol) was dissolved in tert-butyl methyl ether (28 mL).  
Pivaldehyde (430 µl) was added. A solution of ammonium acetate (1.978 g in 28 mL 
methanol) was added in portions.  The reaction was heated to reflux overnight.  After the 
reaction was cooled to room temperature, 2M sodium hydroxide (25 mL) was added.  



www.manaraa.com

  

 35 

The yellow precipitate was extracted with dichloromethane (3 x 50 mL), dried over 
magnesium sulfate, and concentrated down under reduced pressure.  The yellow residue 
was purified by flash chromatography on silica gel (1:70:130 ammonia:methanol:DCM) 
to give compound 2.4 (643.2, 45 %) as a yellow solid.  1H NMR (400 MHz, CDCl3): δ 
(ppm) = 7.89 (br d, J=8.64 Hz, 2H), 7.59 (d, J=8.59 Hz, 1H), 7.39-7.44 (m, 1H), 7.13-
7.17 (m, 2H), 6.91-6.98 (m, 2H), 6.85 (d, J=8.40 Hz, 1H), 5.99 (s, 2H), 2.53 (s, 3H).  
HRMS (ESI) calc’d for [C23H19N3O3]+: m/z [M+H]+ 386.1496, found 386.1500.   
 
Synthesis of 2-(4-formylphenoxy)acetic acid (2.7)46 
4-hydroxybenzaldehyde (0.3 g, 2.46 mmol) and potassium carbonate (1.358 g, 9.83 
mmol) was dissolved in acetone (4.9 mL).  The reaction was heated to 40o C for 15 
minutes.  Bromoacetic acid (0.34 g, 2.46 mmol) was added in portions.  The reaction was 
left to stir under reflux overnight.  After the reaction was cooled down to room 
temperature, water (10 mL) was added.  The reaction mixture was washed with ethyl 
acetate (2 x 10 mL).  The aqueous layer was acidified to pH 2 with 6N HCl.  The fine 
precipitate was extracted with ethyl acetate (3 x 20 mL), dried over magnesium sulfate, 
and concentrated down to give compound 2.7 (415.5 mg, 94 %) as an off-white solid. 1H 
NMR (CD3OD): δ (ppm) = 7.34 (d, J=8.62 Hz, 2H), 6.93 (d, J=8.80 Hz, 2H), 4.66 (s, 
2H).   
 
Synthesis of 2-(4-(4-(benzo[d][1,3]dioxol-5-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-
2-yl)phenoxy)acetic acid (2.8)36 
Diketone 2.3 (1 g, 3.72 mmol) was dissolved in tert-butyl methyl ether (37 mL).  p-
anisaldehyde (678 µl, 5.57 mmol) was added.  A solution of ammonium acetate (2.87 g in 
41 mL of methanol) was added in portions.  The reaction was heated to reflux overnight.  
After the reaction cooled to room temperature, water (35 mL) was added.  The reaction 
mixture was acidified to pH 4 with 2M hydrochloric acid.  The yellow precipitate was 
filtered to give compound 2.5 (309 mg, 97 %) as a yellow solid.  1H NMR (400 MHz, 
CD3OD): δ (ppm) = 8.11 (t, J=7.96 Hz, 1H), 8.05 (d, J=8.79 Hz, 2H), 7.65 (d, J=7.91 Hz, 
1H), 7.61 (d, J=7.91 Hz, 1H), 7.18 - 7.23 (m, 2H), 7.09 - 7.13 (m, 2H), 6.99 (d, J=8.54 
Hz, 1H), 6.07 (s, 2H), 4.86 (s, 2H), 2.79 (s, 3H).  HRMS (ESI) calc’d for [C24H19N3O5]+: 
m/z [M+H]+ 430.1395, found 430.1394. 
 
Synthesis of 6-((tert-butoxycarbonyl)amino)hexanoic acid (2.9)47 
6-aminocaproic acid (20 g, 152 mmol) was dissolved in H2O:Dioxane (488 mL, 1:2).  
The reaction mixture was adjusted to pH 10 with sodium hydroxide.  A solution of di-
tert-butyl dicarbonate (37.3 g, 85 mmol) in H2O:dioxane (250 mL, 1:2) was added 
dropwise while maintaining a basic pH.  The reaction was left to stir overnight. The 
solvent was removed under reduced pressure, and the reaction mixture was acidified to 
pH 3 with 1M citric acid.  The product was extracted with ethyl acetate (4 x 300 mL), 
dried over magnesium sulfate, and then concentrated down to give compound 2.9 as a 
colorless oil (29.2 g, 83 %).  1H NMR 400 MHz, CDCl3): δ (ppm) = 2.31 (t, J=7.40 Hz, 
2H), 1.61 (dt, J=15.11, 7.48 Hz, 2H), 1.43 - 1.51 (m, 4H), 1.41 (br s, 9H). 
 
Synthesis of 2,5-dioxopyrrolidin-1-yl 6-((tert-butoxycarbonyl)amino)hexanoate 
(2.10)47 
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Carboxylic acid 2.9 (28 g, 121 mmol) and N-hydroxysuccinimide (15.74 g, 137 mmol) 
were dissolved in dioxane (138 mL).  A solution of 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide (18.79 g, 121 mmol) dissolved in 
dimethylformamide (104 mL) was added dropwise to the reaction mixture at 0o C and the 
reaction was left to stir overnight.  The reaction was quenched with water (75 mL) and 
the product was extracted with ethyl acetate (3 x 150 mL), dried over magnesium sulfate 
and concentrated down under reduced pressure to give compound 2.10 (36.4 g, 92 %) as 
a dirty white solid.  1H NMR (400 MHz, CDCl3): δ (ppm) = 2.78 - 2.83 (m, 4H), 2.58 (t, 
J=7.35 Hz, 2H), 1.74 (dt, J=14.88, 7.38 Hz, 3H), 1.53 (br s, 1H), 1.44 - 1.54 (m, 3H), 
1.41 (s, 9H).   
 
Synthesis of 6-(6-((tert-butoxycarbonyl)amino)hexanamido)hexanoic acid (2.11)47 
Activated ester 2.10 (36.4 g, 111 mmol) and triethylamine (19 mL, 136 mmol) were 
dissolved in dioxane (231 mL).  6-aminocaproic acid (14.83 g, 113 mmol) was added and 
the reaction was left to stir overnight.  The reaction was then quenched with water (150 
mL) and extracted with ethyl acetate (3 x 100 mL), dried over magnesium sulfate and 
concentrated down under reduced pressure to give compound 2.11 (34.7 g, 91 %) as a 
waxy solid.  LRMS: m/z [M+H]+ 345.5. 
 
Synthesis of 2,5-dioxopyrrolidin-1-yl 6-(6-((tert-butoxycarbonyl) amino) 
hexanamido) hexanoate (2.12)47 
Carboxylic acid 2.11 (34.7 g, 101 mmol) and N-hydroxysuccinimide (14.14 g, 123 
mmol) were dissolved in dioxane (174 mL).  A solution of 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide (17.20 g, 111 mmol) dissolved in 
dimethylformamide (116 mL) was added dropwise to the reaction mixture at 0 °C and the 
reaction was left to stir overnight.  The solvent was removed under reduced pressure and 
the product was extracted with ethyl acetate (3 x 150 mL).  The organic layer was dried 
over magnesium sulfate and reduced down to a waxy solid.  The crude product was 
purified by flash chromatography on silica gel (3:1 – 2:3 hexanes:ethyl acetate) to give 
compound 2.12 (30 g, 67 %) as a white waxy solid.  1H NMR (400 MHz, CD3OD): δ 
(ppm) = 3.25 (q, J=6.43 Hz, 2H), 3.08 (br d, J=5.96 Hz, 2H), 2.80 - 2.86 (m, 4H), 2.61 (t, 
J=7.08 Hz, 2H), 2.16 (br t, J=7.49 Hz, 2H), 1.73 - 1.80 (m, 2 H), 1.58 - 1.67 (m, 5 H), 
1.45 - 1.50 (m, 3 H), 1.42 (s, 9H), 1.25 - 1.39 (m, 3H). 
 
Synthesis of 1,23-diazido-3,6,9,12,15,18,21-heptaoxatricosane (2.13)37 
Octaethylene glycol (10 g, 27 mmol) and triethylamine (11.29 mL, 81 mmol) was added 
to dichloromethane (33 mL).  A solution of mesyl chloride (6.31 mL, 81 mmol) in 
dichloromethane (33 mL) was added to the reaction mixture dropwise at 0 °C and the 
reaction mixture was left to stir for two hours, and then two hours at room temperature.  
The reaction mixture was washed with 1 N hydrochloric acid (100 mL) and brine (100 
mL).  The organic layer was dried over sodium sulfate and concentrated down under 
reduced pressure.  The colorless oil was redissolved in dimethylformamide (67 mL), 
sodium azide (8.77 g, 135 mmol) was added and the reaction mixture was left to stir at 65 
°C overnight.  The solvent was removed under reduced pressure.  The residue was 
redissolved in 100 mL of ether.  The precipitate was filtered and the filtrate was washed 
with 5% lithium chloride (2 x 50 mL).  The organic layer was dried over magnesium 
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sulfate and concentrated down.  The crude product was purified by flash chromatography 
on silica gel (0:100 – 2:98 methanol:DCM).  Compound 2.13 (10.3 g, 91 %) was 
collected as a colorless oil.  1H NMR (400 MHz, CDCl3): δ (ppm) = 3.62 - 3.66 (m, 28 
H), 3.35 - 3.39 (m, 4 H).   
 
Synthesis of 23-azido-3,6,9,12,15,18,21-heptaoxatricosan-1-amine (2.14)37 
Compound 2.3 (10.3 g, 24.5 mmol) was dissolved in 1 N hydrochloric acid (122 mL).  A 
solution of triphenylphosphine (5.78 g, 22.05 mmol) in ether (122 mL) was added in 
portions to the reaction mixture. The reaction was left to stir for 24 hours at room 
temperature.  The reaction mixture was diluted with 50 mL of ethyl acetate.  The organic 
layer was collected, and the aqueous layer was extracted with ethyl acetate (2 x 50 mL).  
The pH of the aqueous layer was adjusted to 12 with concentrated potassium hydroxide 
and extracted with dichloromethane (3 x 75 mL).  The organic layer was dried over 
sodium sulfate and concentrated down.  The crude product was purified by flash 
chromatography on silica gel (4:96 methanol:DCM) to give compound 2.14 (7.6 g, 79 %) 
as a colorless oil.  IRmax 3350, 2200 cm-1.  1H NMR (500 MHz, CDCl3): δ (ppm) = 3.72 
(br d, J=3.97 Hz, 2 H), 3.63 - 3.68 (m, 26 H), 3.59 - 3.63 (m, 2 H), 3.37 - 3.41 (m, 1 H), 
3.37 - 3.41 (m, 1 H).  
 
Synthesis of tert-butyl (1-azido-25,32-dioxo-3,6,9,12,15,18,21-heptaoxa-24,31-
diazaheptatriacontan-37-yl)carbamate (2.15)37 
Compound 2.14 (7.6 g, 19.27 mmol) and triethylamine (3.41 mL, 24.47 mmol) were 
dissolved in chloroform (96 mL).  1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (2.99 
g, 19.27 mmol) was added.  The reaction was left to stir at 55 °C for 3.5 hours.  The 
reaction was cooled to room temperature, diluted with 150 mL of chloroform, and 
washed with 50 mL of water.  After the emulsion slowly separated, the organic layer was 
collected, dried over sodium sulfate, and concentrated down to give compound 2.15 (8.1 
g, 58.3 %) as a waxy solid.  1H NMR (500 MHz, CD3OD): δ (ppm) = 3.57 - 3.70 (m, 22 
H), 3.53 (t, J=5.44 Hz, 2 H), 3.36 (dt, J=10.04, 5.04 Hz, 4 H), 3.13 - 3.19 (m, 2 H), 2.98 - 
3.06 (m, 3 H), 2.13 - 2.23 (m, 4 H), 1.61 (dq, J=15.22, 7.68 Hz, 4 H), 1.45 - 1.56 (m, 5 
H), 1.42 (s, 9 H), 1.27 - 1.39 (m, 5 H). 
 
Synthesis of 2,5-dioxopyrrolidin-1-yl 5-((3aS,4S,6aR)-2-oxohexahydro-1H-
thieno[3,4-d]imidazol-4-yl)pentanoate (2.16)37 
D-Biotin (8 g, 32.7 mmol) and N-hydroxysuccinimide (5.65 g, 49.1 mmol) were 
dissolved in dimethylformamide (65 mL).  1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide (6.10 g, 39.3 mmol) was added to the reaction and 
stirred at room temperature for 18 hours.  The reaction was diluted with 50 mL of water.  
The precipitate was collected by vacuum filtration through a fine glass filter to give 
compound 2.16 (9.8 g, 88 %) as a white solid.  1H NMR (500 MHz, DMSO-d6): δ (ppm) 
= 6.40 (br s, 1 H), 6.39 - 6.42 (m, 1 H), 6.34 (br s, 1 H), 4.26 - 4.32 (m, 1 H), 4.09 - 4.17 
(m, 1 H), 3.06 - 3.13 (m, 1 H), 2.76 - 2.85 (m, 5 H), 2.66 (t, J=7.40 Hz, 2 H), 2.54 - 2.59 
(m, 1 H), 2.19 (t, J=7.43 Hz, 1 H), 1.50 - 1.67 (m, 3 H), 1.28 - 1.49 (m, 3 H). 
 
Synthesis of 6-amino-N-(1-azido-25-oxo-3,6,9,12,15,18,21-heptaoxa-24-
azatriacontan-30-yl)hexanamide (2.17)37  
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Compound 2.15 (8.1 g, 11.24 mmol) was dissolved in dichloromethane (42 mL) and 
trifluoroacetic acid (14.72 mL).  The reaction was left to stir at room temperature for 4 
hours.  The reaction mixture was concentrated down under reduced pressure and the 
glassy solid was redissolved in 2 mL of water.  Potassium carbonate was added until all 
of the acid was neutralized, and the product was extracted with chloroform (3 x 50 mL).  
The organic layer was dried over sodium sulfate and concentrated down to a waxy solid 
to give the product (5.2 g, 74 %) as a waxy solid (used crude in the next step).  LRMS: 
m/z [M+H]+ 621.7. 
 
 
Synthesis of N-(1-amino-25-oxo-3,6,9,12,15,18,21-heptaoxa-24-azatriacontan-30-yl)-
6-(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-
yl)pentanamido)hexanamide (2.18) 
Compound 2.16 (3.8 g, 6.12 mmol) and triethylamine (4.07 mL, 29.2 mmol) were added 
to chloroform (27 mL).  Compound 2.17 ( g, __ mmol) and 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide (948 mg, 6.12 mmol) were added and the reaction 
was heated to 55 °C for 50 minutes.  The reaction was cooled to room temperature and 
diluted with 30 mL of chloroform.  The product was washed with water (2 x 50 mL).  
The organic layer was dried over sodium sulfate and concentrated down to give 
compound 2.18 (3.8 g, 74%) as a waxy solid. HRMS (ESI) calc’d for [C38H70N8O11S]+: 
m/z [M+H]+ 847.4955, found 847.5005. 
 
Synthesis of N-(1-amino-25-oxo-3,6,9,12,15,18,21-heptaoxa-24-azatriacontan-30-yl)-
6-(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-
yl)pentanamido)hexanamide (2.19) 
Compound 2.18 (2.3 g, 2.72 mmol) was dissolved in methanol (22 mL).  Palladium (II) 
hydroxide (0.3 g) was added and the round bottom flask was put under vacuum.  
Hydrogen gas was introduced into the system and the reaction was monitored by LCMS.  
After no more azide was detected by LCMS, the reaction mixture was filtered through 
celite and the filtrate was concentrated down.  The crude product was purified by flash 
chromatography on silica gel (15:85 - 45:55 methanol:DCM) to give compound 2.19 (1.9 
g, 89 %) as a waxy solid.  1H NMR (500 MHz, DMSO-d6): δ (ppm) = 6.31-6.44 (m, 
1H), 4.30 (br dd, J=7.52, 5.01 Hz, 1 H), 4.12 (dd, J=7.70, 4.40 Hz, 1 H), 3.62 (br s, 22 
H), 3.58 (br t, J=5.17 Hz, 2 H), 3.54 (br d, J=3.24 Hz, 3 H), 3.52 - 3.56 (m, 1 H), 3.37 (t, 
J=5.87 Hz, 2 H), 3.13 - 3.17 (m, 2 H), 2.93 - 2.99 (m, 5 H), 2.79 (dd, J=12.53, 5.01 Hz, 1 
H), 2.56 (br d, J=12.47 Hz, 1 H), 1.98 - 2.05 (m, 5 H), 1.40 - 1.50 (m, 6 H), 1.23 - 1.38 
(m, 5 H), 1.13 - 1.21 (m, 4 H).  HRMS (ESI) calc’d for [C38H72N6O11S]+: m/z [M+H]+ 
821.5050, found 821.5066. 
 
Synthesis of 2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)-5-((25,32,39-trioxo-43-
((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-3,6,9,12,15,18,21-
heptaoxa-24,31,38-triazatritetracontyl)carbamoyl)benzoic acid (2.20)  
Compound 2.19 (34.7 mg, 0.024 mmol) and triethylamine (28 µl, 0.116 mmol) was 
dissolved in chloroform (500 µl).  A solution of fluorescein (20 mg, 0.024 mmol) and 1-
ethyl-3-(3-dimethylaminopropyl)carbodiimide (7.2 mg, 0.027 mmol) in 1 mL of 
chloroform was added to the reaction mixture and left to stir at 60 °C overnight.  The 
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reaction mixture was concentrated down and purified by preparative HPLC to give 
compound 2.20 (40 mg, 81%) as an orange oil.  HRMS (ESI) calc’d for [C59H82N6O17S]+: 
m/z [M+H]+ 1179.5527, found 1179.5518. 
 
Synthesis of 4-(((5S,6R,7S,9R)-6-methoxy-5-methyl-14-oxo-6,7,8,9,15,16-hexahydro-
5H,14H-17-oxa-4b,9a,15-triaza-5,9-
methanodibenzo[b,h]cyclonona[jkl]cyclopenta[e]-as-indacen-7-yl)(methyl)amino)-4-
oxobutanoic acid (2.21)  
Staurosporine (40 mg, 0.064 mmol), succinic anhydride (12 mg, 0.090 mmol), and 
dimethylaminopyridine (20 mg, 0.129 mmol) were dissolved in dimethylsulfoxide (1 
mL).  The round bottom flask was covered in aluminum foil to stir in the dark for 30 
hours.  The reaction was acidified with 0.1% trifluoroacetic acid.  The fine precipitate 
was filtered and collected as a yellow solid to give compound 2.21 (36 mg, 76%).  
LRMS: m/z [M+H]+ 567.6.  
 
Synthesis of N1-((5S,6R,7S,9R)-6-methoxy-5-methyl-14-oxo-6,7,8,9,15,16-hexahydro-
5H,14H-17-oxa-4b,9a,15-triaza-5,9-
methanodibenzo[b,h]cyclonona[jkl]cyclopenta[e]-as-indacen-7-yl)-N1-methyl-N4-
(25,32,39-trioxo-43-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-
3,6,9,12,15,18,21-heptaoxa-24,31,38-triazatritetracontyl)succinamide (2.22) 
Compound 2.19 (14.49 mg, 0.018 mmol) and triethylamine (92 µl, 0.018 mmol) were 
dissolved in chloroform (500 µl).  A solution of compound 2.21 (10 mg, 0.018 mmol) 
and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (2.7 mg, 0.018 mmol) in 1 mL of 
chloroform was added to the reaction mixture and left to stir at 60 °C overnight.  The 
reaction mixture was concentrated down and purified preparative HPLC to give 
compound 2.22 (0.3 mg, 1.25%) as a yellow solid.  HRMS (ESI) calc’d for 
[C70H100N10O16S]+: m/z [M+H]+ 1369.7109, found 1369.7104. 
 
Synthesis of N-(1-(4-(4-(benzo[d][1,3]dioxol-5-yl)-5-(6-methylpyridin-2-yl)-1H-
imidazol-2-yl)phenoxy)-2,28-dioxo-6,9,12,15,18,21,24-heptaoxa-3,27-
diazatritriacontan-33-yl)-6-(5-((3aR,4R,6aS)-2-oxohexahydro-1H-thieno[3,4-
d]imidazol-4-yl)pentanamido)hexanamide (2.23)  
Compound 2.19 (60 mg, 0.073 mmol) and triethylamine (46.4 µl, 0.33 mmol) were 
dissolved in chloroform (500 µl).  A solution of compound 2.8 (34 mg, 0.079 mmol) and 
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (12.2 mg, 0.079 mmol) in 1 mL of 
chloroform was added to the reaction mixture and left to stir at 60 °C overnight.  The 
reaction mixture was concentrated down and purified preparative HPLC to give 
compound 2.23 (4 mg, 4.6 %).  HRMS (ESI) calc’d for [C62H89N9O15S]+: m/z [M+H]+ 
1232.6269, found 1232.6263. 
 
Synthesis of (E)-3-(3,4-dimethoxyphenyl)-1-(3-hydroxyphenyl)prop-2-en-1-one 
(2.24)48 
3,4-dimethoxybenzaldehyde (15 g, 90 mmol) and 3-hydroxyacetophenone (12.29 g, 90 
mmol) were dissolved in methanol (903 mL).  A solution of potassium hydroxide (28.7 g, 
512 mmol) in 15 mL of water was added to the reaction and left to stir overnight.  Half of 
the solvent was removed under reduced pressure, and 500 mL of water was added to the 
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reaction mixture.  The reaction mixture was acidified to pH 6 using concentrated 
hydrochloric acid.  The precipitate was filtered to give compound 2.24 (23 g, 89 %) as a 
yellow solid.  1H NMR (500 MHz, CD3OD): δ (ppm) = 7.72 (br s, 1 H), 7.72 (d, J=15.59 
Hz, 1 H), 7.53 - 7.58 (m, 2 H), 7.42 - 7.44 (m,1 H), 7.32 - 7.37 (m, 2 H), 7.29 (dd, 
J=8.31, 1.90 Hz, 1 H), 7.02 - 7.05 (m, 1 H), 7.00 (d, J=8.31 Hz, 1 H), 3.89 (d, J=13.57 
Hz, 6 H). 
 
Synthesis of 3-(3,4-dimethoxyphenyl)-1-(3-hydroxyphenyl)propan-1-one (2.25)48 
Ammonium formate (6.85 g, 109 mmol) and palladium catalyst on carbon (0.5 g) were 
put into methanol (40 mL).  A solution of compound 2.24 (20.6 g, 72.5 mmol) in 50 mL 
of methanol was added to the reaction mixture and stirred under reflux for 3.5 hours.  The 
reaction was cooled to room temperature, filtered over celite and the filtrate was 
concentrated down under reduced pressure.  50 mL of water was added and the resulting 
solid was extracted with ethyl acetate (3 x 50 mL).  The organic layer was dried over 
magnesium sulfate, and concentrated down under reduced pressure to give compound 
2.25 (18.2 g, 88 %) as a light brown solid.  1H NMR (400 MHz, CDCl3): δ (ppm) = 7.49 
(d, J=7.76 Hz, 1 H), 7.44 - 7.46 (m, 1 H), 7.30 (t, J=7.86 Hz, 1 H), 7.04 (dd, J=8.05, 1.90 
Hz, 1 H), 6.73 - 6.79 (m, 3 H), 3.84 (s, 3 H), 3.83 (s, 3 H), 3.21 - 3.27 (m, 2 H), 2.96 - 
3.02 (m, 2 H). 
 
Synthesis of 3-(3,4-dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propan-1-
one (2.26)49 
Compound 2.25 (5 g, 17.46 mmol), potassium carbonate (9.85 g, 69.9 mmol), and 4-(2-
chloroethyl)morpholine hydrochloride (3.25 g, 17.46 mmol) were dissolved in 
dimethylformamide (88 mL).  The reaction was left to stir at 90 °C for 2 hours.  After the 
reaction cooled to room temperature, the mixture was poured over 100 mL of ice water.  
The precipitate was extracted with ethyl acetate (3 x 75 mL), dried over sodium sulfate, 
and concentrated down under reduced pressure.  The crude product was purified by flash 
chromatography on silica gel (4:1-1:1 hexanes:ethyl acetate) to give compound 2.26 (4.7 
g, 67 %) as a light brown solid.  1H NMR (500 MHz, CDCl3): δ (ppm) = 7.53 (d, J=7.70 
Hz, 1 H), 7.49 (d, J=2.08 Hz, 1 H), 7.33 - 7.37 (m, 1 H), 7.35 (t, J=7.92 Hz, 1 H), 7.09 - 
7.12 (m, 1 H), 7.10 (dd, J=8.04, 2.23 Hz, 1 H), 6.76 - 6.81 (m, 3 H), 3.86 - 3.87 (m, 1 H), 
3.87 (s, 2 H), 3.85 (s, 3 H), 3.76 (br s, 4 H), 3.23 - 3.29 (m, 1 H), 3.25 (br s, 1 H), 3.26 (t, 
J=7.64 Hz, 1 H), 3.00 (t, J=7.64 Hz, 2 H), 2.55 - 2.69 (m, 4 H). 
 
Synthesis of (R)-3-(3,4-dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propan-
1-ol (2.27)49 
Compound 2.26 (4 g, 10.01 mmol) was dissolved in anhydrous tetrahydrofuran (36 mL) 
under argon atmosphere.  A solution of 1.8 M (+)-B-chlorodiisopinocampheylborane 
(8.34 mL, 15.02 mmol) in hexane was added dropwise via cannula to the reaction 
mixture at -10 °C.  The reaction stirred at -10 °C for three hours, after which another 0.2 
equivalents of (+)-DIP-Cl was added and the reaction was left in the refrigerator 
overnight.  50 mL of ether was added to the reaction mixture and cooled to 0 °C.  
Diethanolamine (50 mL) was added and the reaction stirred for 1 hour, after which the 
precipitate was filtered and washed with ether.  The filtrate was reduced down and the 
crude product was purified by flash chromatography on silica gel (0:100 – 6:94 
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methanol:dichloromethane) to give compound 2.27 ( 2.7 g, 67 %, 92 %ee) as a pale 
yellow oil.  1H NMR (400 MHz, CDCl3): δ (ppm) = 7.21 - 7.27 (m, 1 H), 6.88 - 6.93 (m, 
2 H), 6.68 - 6.82 (m, 4 H), 4.64 (br t, J=6.27 Hz, 1 H), 4.09 (t, J=5.69 Hz, 2 H), 3.84 (d, 
J=2.10 Hz, 6 H), 3.67 - 3.75 (m, 4 H), 2.78 (t, J=5.66 Hz, 2 H), 2.52 - 2.68 (m, 6 H), 1.92 
- 2.12 (m, 3 H). 
 
Synthesis of 2-(3,4,5-trimethoxyphenyl)butanoic acid (2.28)48 
3,4,5-trimethoxyphenyl acetic acid (10 g, 44.2 mmol) was dissolved in anhydrous 
tetrahydrofuran under argon atmosphere.  The solution was cooled to -25 °C and a 2M 
solution of sodium bis(trimethylsilyl)amide in tetrahydrofuran (50 mL, 100 mmol) was 
added via cannula.  The mixture was allowed to stir for 30 minutes.  Ethyl iodide (4.29 
mL, 53 mmol) was added and left to stir at  °C for two hours.  The reaction was allowed 
to warm to room temperature and stirred overnight.  The solution was washed with water 
(3 x 20 mL) and the combined aqueous layers were acidified to pH 2 with 2 N 
hydrochloric acid.  The product was extracted with ethyl acetate (3 x 100 mL).  The 
organic layer was dried over magnesium sulfate and concentrated down under reduced 
pressure to give compound 2.28 (10.9 g, 97 %) as a light brown solid.   
 
Synthesis of (S)-2-(3,4,5-trimethoxyphenyl)butanoic acid  (2.29)48 
Compound 2.28 (10 g, 44.2 mmol) and (-)-cinchonidine (12.6 g, 44.2 mmol) were 
dissolved in 165 mL of acetonitrile.  The mixture was heated to reflux for thirty minutes 
and removed from heat to cool to room temperature.  The solid was collected by filtration 
and the filtrate was heated to reflux for thirty minutes.  This process was repeated once 
more.  The combined precipitates were dissolved in a 2.3:1 mixture of water and 
dichloromethane (200 mL).  The mixture was adjusted to pH 2 with concentrated 
hydrochloric acid.  The organic layer was collected and the aqueous layer was extracted 
with dichloromethane (2 x 150 mL).  The combined organic layers were washed with 1 N 
hydrochloric acid (2 x 150 mL) and then 10 % saturated sodium bicarbonate solution 
(150 mL).  The organic layer was dried over magnesium sulfate and then concentrated 
down under reduced pressure to give compound 2.28 (1.9 g, 38 %) as a white solid.  1H 
NMR (500 MHz, CDCl3): δ (ppm) = 6.53 (s, 2 H) 3.84 (s, 6 H) 3.82 (s, 3 H) 3.37 (t, 
J=7.70 Hz, 1 H) 2.03 - 2.13 (m, 1 H) 1.79 (dquin, J=14.14, 7.29, 7.29, 7.29, 7.29 Hz, 1 
H) 0.92 (t, J=7.37 Hz, 3 H). 
 
Synthesis of (S)-1-((S)-2-(3,4,5-trimethoxyphenyl)butanoyl)piperidine-2-carboxylic 
acid (2.31) 
Compound 2.29 (608 mg, 2.391 mmol), 2-chloro-1-methylpyridinium iodide (794 mg, 
3.11 mmol), and (S)-methyl piperadine-2-carboxylate hydrochloride (430 mg, 2.391 
mmol) were dissolved in dichloromethane (10 mL).  Triethylamine (333 µl, 2.391 mmol) 
was added and the reaction was left to stir at room temperature for 2 hours.  The reaction 
mixture was washed with saturated sodium bicarbonate (3 x 20 mL).  The organic layer 
was collected, dried over magnesium sulfate, and concentrated down.  The yellow residue 
was redissolved in 8 mL of methanol and 4 mL of water.  Lithium hydroxide 
monohydrate (502 mg, 11.96 mmol) was added and the reaction stirred overnight.  5 mL 
of water was added and the methanol was removed by rotary evaporation.  The aqueous 
solution was treated with 10 mL of ethyl acetate, and then washed with 10 mL of 
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saturated sodium bicarbonate.  The combined aqueous layers were acidifed to pH 4 with 
2 N hydrochloric acid.  The precipitate was collected by extraction with ethyl acetate (3 x 
15 mL), dried over magnesium sulfate, and concentrated down to give compound 2.31 
(700 mg, 80 %) as a white solid.  1H NMR (400 MHz, CD3OD): δ (ppm) = 6.59 (s, 1 
H), 6.55 (s, 1 H), 3.77 - 3.84 (m, 6 H), 3.69 - 3.75 (m, 3 H), 2.15 - 2.32 (m, 1 H), 1.90 - 
2.08 (m, 2 H), 1.13 - 1.77 (m, 8 H), 0.81 - 0.94 (m, 3 H). 
 
Synthesis of (R)-3-(3,4-dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl 
(S)-1-((S)-2-(3,4,5-trimethoxyphenyl)butanoyl)piperidine-2-carboxylate (2.32)  
Compound 2.31 (900 mg, 2.46 mmol), dimethylaminopyridine (301 mg, 2.46 mmol), and 
N,N’-dicyclohexylcarbodiimide (508 mg, 2.46 mmol) were dissolved in dichloromethane 
(3 mL).  Compound 2.27 (989 mg, 2.46 mmol) was added to the reaction mixture and left 
to stir at room temperature overnight.  The solvent was removed under reduced pressure 
and the crude product was purified by flash chromatography on silica gel (4:96 
methanol:dichloromethane).  The resulting oil was further purified by reverse phase 
preparative HPLC to give compound 2.32 (1.5 g, 81%) as an off white solid.  1H NMR 
(500 MHz, CDCl3, mixture of rotamers): δ (ppm) = 7.25 (m, 1 H,) 6.76 - 6.80 (m, 1 H), 
6.76 – 6.78 (m, 2 H), 6.72 - 6.94 (m, 2 H), 6.62 - 6.70 (m, 1 H), 6.46 (s, 1 H) 6.39 (s, 1 
H), 4.07 - 4.12 (m, 2 H), 3.85 (d, J=4.10 Hz, 9 H), 3.82 - 3.84 (m, 6 H), 3.70 - 3.75 (m, 4 
H), 3.57 (br t, J=7.06 Hz, 1 H), 2.79 (dt, J=8.53, 5.73 Hz, 2 H), 2.30 - 2.63 (m, 8 H), 2.02 
- 2.13 (m, 4 H), 1.23 - 1.80 (m, 9 H), 0.86 - 0.92 (m, 3 H).  1H NMR HRMS (ESI) calc’d 
for [C42H56N2O10]+: m/z [M+H]+ 749.4005, found 749.4033. 
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Appendix B – Proton NMR for Selected Compounds 

All NMR experiments were done on Varian UnityInova 400MHz spectrometer or Direct 
Drive 500 MHz Spectrometer. 
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